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TECHNICAL MEMORANDUM
(

P9TENTIAL FLOW IN ENGINI VALVE S.*

By Bruno Eck,

The extensive applicability of the hydrodynamic theory to

the problems of engine construction is clearly shown in the

following attempt to determine by exact methods the nature of

the flow in valves under variously restricted conditions. Ob-

servation shows that two principal kinds of flow occur in sim-

ple flat-seated valves. For small valve lifts, the flow is

along the horizontal wall and is therefore deflected 90°, but

for greater valve lifts the flow separates and forms a free

stream, whose angle of deflection naturally increases with in-

creasing lift, Foth these kinds of’flow can, in fact, be

theoretically explained.

In order to simplify the flow and render computation pos-

sible, the following measures are adopted:

1. The whole problem is treated two-dimensionally;

‘2* T’heeffect of friction is disregarded;

i
II

3. It is assumed that the fluid, after leaving the valve

III opening, forms s.free stream, which extends into infinity at
I$
~! an angle a, notwithstanding the fact that the space over
=!

! the valve head is mostly filled with the sam~ fluid and that
\,

I
,,
11 * Contribution

~’
Technical High
Mathematik und

,,

i..

from ths Aerodynamic Institute of the Aachen
School, reprinted from “Zeitschrift ffirangewandte
l$echanik,” Vol. lV, 1924, pp. 464-474.
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set limits to the formation of the

stream.._. . —.,

The theory of discontinuity surfzces evolved by Kirchhoff

and Helmholtz is prefer~.bly employed for the solution of two-

aimension,~l problem of this kind, This theory does not re-

quire constancy of velocity at the points ~Therethe ordinary

theory would require a very high velocity, namely, near the

sharp corners of the body, The very great velocity would, ac-

cording to Bernouilliis equation, demand a very great negative

pressure at these points, which is probably not assumable from

the physical viewpoint for ordinary fluids, Therefore, in or-

der to harmonize such a solution with the reality, we can as-

sume that these points are shut out from the flow by a small

circle, or that any slight rounding ‘wouldnecessitate very great

but not infinitely great velocities. Zirchhoff stated the

mathematical methods for the convenient application of this

theory to similar special cases. These methods consist chiefly

in finding the conformable diagram of the hodograph on the

plane of the velocity potential, which is al-ways successful when

the,rigid walls are flat.

1. Stream f~eeiwaboth sides - We will first consider a——-———— “

flow (Fig. 1), which, coming from infinity (A), is confined by

the Farallel walls AB and AE, breaks off at C and E, forms

a free.surface and then extends to infinity at an angle a.

The stream is assumed to be confined by a free surface, i.e.,
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the velocity on the boundary is assumed to fall d~scontinuously

to zero.* If there is a pressure PO in the still fluid, it

follows from Bernouillifs equation that the velocity is constant

on the free surface.. If wa put this velocity = 1, it denotes

no specialization, but only a simplification of the calculation,

~~hichcan be offset by a suitable

From C, through D = ~, up to

fore 1, while from th: point B,

o to 1.

If the potential function of

disposition.of the mass units.

E, the velocity is there-

the pressure increases from

the flow sought is designated

by x=q+iv, than dx/dz = u - iv = w represents the ve-

locity, tha direction of the motion being reflected on the x

axis.

Sin@ w for the margin of the flow is known partly by the

absolute magnitude and part3.y by ‘the~irection, we can deter-

mine the limits of the

at C the free surface

its of the free surface—-
* You are here referred

r plane (Fig. 2). At B,w=O and

begins (i,e,, w = 1.), so that the lim-

must lie on the unit circle and de-——
to the va:uable works of Sir G. Green-

hill, British Advisory Committee for Aeronautics, No. 19, 1910,
,:~} llTheoryof a Strem~Jine Past a Plane Carrier and of the Discon-

1’

) tinuity Arising at the Edge, 11which gives quite a complete list

j of all the kinds of flow occurring in this field, along with

I

$:
their di&~T’AME~~’LJ ~Xf3Li*ITien&,

!:
R. von Mises (~lZeitschIiftdes Vereines Deutscher Ingenieure, J~

1917, pp. 447 ff, “Berechnung von Ausfall und Ueberfallzahlenll),.,
1,,, ho-dpreviously discussed this problem thoroughly and had in

fact, calculated the coefficients for the form of flow here con-
?’ siderwi.
-1
(’/,

:,
/ ‘1

11, ..——-——-—.—-—..—.
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scribes the quadrant from C to E. From E to A, u = O and

v falls from 1 to a certain value ~ which we will provision-

ally assume to be less than 1. From A to B, u = O, so that

the whole flow in’the w plane is portrayed by a quadrant.

The connection between x = (p-ti~f and w= u-iv fol-

1ow$3from dx/dz = w, This is a complex differential equation,

the solution of which is decisive for our problem. In our so-

lution, we find x = fz and utilize the differential equation

for finding this expression, by first obtaining x = g w and

then finding ~=f~ by an integration. An expression for

the function x, similar to the one for w, is indeed known,

since its lirrits can also be pivene In the theory of func-

tions, the conforr.abledi~gram affords a conv~nient metho3 for

finding X=gw.

Far the further calculation, it is more convenient to work

with the natural log~rithm cf w instead of with w itself,

a simplification also employed in the cases subsequently treated

(Fig. 3).

The further calculation is ?.sfollows. The strip BCEAB

is &lotted on a half-plane, so,that the boundary falls on the

Tezl axis.
i

The same thing ha::pens with tha potential .plane x,

it
! These half-planes are than so superposed that the correspond-
+
.fl

IJ

ing points coincide, by which operation the function x = g w

is found,

The plotting of BCEA on the half-plane (Fig. 4) is ac-

complished by means of Christoffells integral

I .
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IJqt =W-ti:

an assertion which

.Cff _ dzl +Bt,

J Z12 _ [.2

can be easily verified by remembering that

1

is increased by TT/2 at the points ~[o, After determining

the constants, we obtain

~r = w~+l
&2 w, “

Plotting the rotential on the half-_&ane.- The boundary—— —. —

lines AECD zmd AED form streamlines between which the whole

stream flows (Fig. 5). The potential is thus plotted on a

strip *B - $E . This difference is, at the same time, the

amount of the fluid flowing through. In order to have a ~efi-

nite case in mird, we pu-t $p -v~=n, By rrie%ns of

C;+ i~:

ze= this strip is plotted on the half-plane, so that

Z=B comes after -1, A comes after O and D remains in

infinity.

If we now establish, by a linear transformation, a connec-

tion betwsen the two half-plzmes, so that corresponding points

coincide, we obtain the function x = f w. In the expression
Zl+a

z = ~lb + ~~ we determine the constants a, b, C, so that

21 =Bafter+aandzf =A=-.o ~ 1/2 (K2 + &) after

z = O and thus obtain

—. — -—
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,-.

K4+1Zr -1- ~ol”= ~.
z= $

-z’ + c

K4+1
or with the insertion of A = ~. and -2 Q-=~

co

z=-
w4+~wa+l

or, since z=ev+i$,
w4-t~w2-tl

0

(1)

The importance of v is due to the fact that the points

Cp+ iv= +CC must have known velocity values. With this con--

dition, we fiti that ~. - 2 Cos 2a,= in which CL is the

:.ngleformed by the stream i n infinity with the x axi~.

The parameters occurring in the solution, with whi ch we

can satisfy the prescribed geometric conditions of flow, are

esps cially im~ortant. It is obvious that they must be connect-

ed with the physi cal properties of the flow. It is in fact ap-

parent from equation (1) that only the two following parame-

ters occur:

1. The ratio of the velocities at A ‘:and D equals K ;

2. The angle a, whioh the stream in in~inity forms with

the x axis,

Since the three quanti ties b,handr= BC must be deter-

imir mined, only the relations n = h/b and m = ,r/b- 1, obtained

~ by two integrations, can be involved. The relation between “

is established through equation (1).
*rem @&c . w

i~ and x dz

it follows that dz = # and Z= fg$, which i~ simpli-

—



?~.A.C.A, Technical Memorandum No. 343

fied by the elimination of dx, since dx/dw is known,

7

.

Z’=w.%4w’+2A d=’-w{%
4W2+2V

w4+~#+l w4+lJJ#+l

Zero and unity are the integration limits for

We obtain
~2

2 K-1 arc tan K
1 + Cosa+#+cosa loglr =

- cosa -

h=i K*K+ 1 log ;—:+ + TT
~ + in cosa - 1 sins log

n sins,

1 -f-Sim
1 - sina”

For the relations m = ~ - 1 and n = $, we obtain, by

taking into consideration for ho= b+ih only the imaginary

comFonent

21 -’2
}

JCosa log ~ + cosa - sins (3)m’- I-r arc tan K -tK —(.‘n - COSCL

n=l+K2 l+K
logl_K+K { cos~ -

1 + sins 4* log ~
n - sins }()

Eq~ations (3) and (4) represent the solution of the first

problem. They always go together, so that here we have a set

of equations with three unknown quantities, If, for example,

an overlapping m is stipulated, m must be introduced into

equation (3), then the values of K and a which satisfy equa-

tion (3) must be determined and then these values must be in-

troduced into equation (4), from which we obtain the valve-

lift n. This procedure must be followed for all values of

Ma which satisfy equation (3),

Such a computation would be very tedious and the determi-

I- .._. ._ - —
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nation of the relations for any desired variation of m would

-. mean much work. It was therefore a great advantage that the

special form of equations (3) and (4) (which could be written

in the form m = - fIK+Kgl a and n= f2K+ K&a) allowed

the employment of nomographic methods, by rreans of which it was

possible to find the corresponding K, a and n for m from

oto~ which were then combined in the following manner.

a&Velocity plotted against the valve-lift, - n = f K

(Fig. 6). K increases .alw.ostlinearly at first znd, with in-

creasing n, approaches asymptotically the value 1. It is

noticeable that all the curves r.= const. lie very C1OS2 to-

gether, so that any change in the overlapping has but little

sffect on the velocity. Tor the valve-lifts occurring in prac-

tice up to n = 1, the n curve closely approximates a straight

line.

b) a== g K (Fi~7),- The ovsrla~ping has, as was to be—

expe cted, a greater effect on a. For small values of m,

a increases with relative rapidity and tends toward a limit,

as n increases, This limit falls for l~rger values of m,

so that at rr,= ~’ only a=cl is possible. It is noteworthy

that, with positive overlappings, the maximum attainable angle

is 36°.
p~.

c) Coefficient of contraction (Fig. 8).- It can be readily

shown that a criterion for the contraction of the emergent

6
stream is given by w = ~ , when 6 denotes the thickness of

the stream.. The course of these values indicates a very slight

I.b__
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dependence on m. For very small values of K , a is faund, by

computing the limiting value for m, to have the value n‘rf+a’>-. ,,,
This is then”manifestly identical with ~irchhoff~s case of the

flow from an infinitely long slit.

d) The pressure-loss coefficient [ = ~ was also

plotted (Fig, 9), Its curves are very sliEhtly affected by m

aridare strongly hyperbolic.

2—“ Stream free on on].yone side - For very small valve-—*

lifts, as mentioned in the introduction, the experiments sho”wad

a flow, which did not 8eparate at the point E, but was de-

flected 90° (Fig. 10). It was found that, svcn mathematically,

such a flow exists, which is treated in what follows, The free

surface is assumed tc begin at C, whose angle a’ with the x

axis increases to a maximum value a at the point F and then

again in infinity attains the value a’ = O. The question here

is not therefore concerning an entirely free stream, but con-

cerning a stream which is bounded on one sids

and on tne other by a fr~e surface,

The interesting problem now arises ~s to

by a fixed wall

whether all con-

ditions of flow, which can occur physically in a configuration

like the flat valve have already be?.nexhausted in the fore-

going casus, It iS, in fact, possible to carry out an investi-
.>

gation of this kird, which bsars principally on the subjsct of

ths log w plane. The hereby mathematically possible cases

ara not always physically Fossible.

11---- –— ..- –



N.A.C.A. Technidal Memorandum No. 343 10

If we obtain, for example, a margin of the log w ~lane,

inherethe limits have no neighboring infinite streamlines,

.. then this naturally has no further physical significance, even

though it may still be of some interest as a theoretical func-

tion. Without continuing this discussion, it may be mentioned

that only one other flow is possible in the above case (Fig.

11). Here also the stream herds 90° at E and follows the

horizontal wall, which it leaves, however, at E1 where the

free surface begins. The angle a’ then gradually increases

until it reacheQ its maxir.umat D = ~. Qn the Other side,

the mgle decreases until it reaches the value a = O at C.

“ The mathematical treatment of the last two cases is very similar

and they will therefore be considered side b; side. For the

purpose of distinguishing them, the first will be designated by

IIa, aridthe second by IIb. The principle of the calculation

is essentially covered in Section 1, although the difficulties

are much ,greaterhere. It is easily seen that the velocity ,

range of IIa and IIb is represented by a ‘tquarter-planel~(Fig.

s 12), which is cut along the unit circle from C tc F and back

to D. The angle CBF is the maximum angle a. The 10g W

pSa.ne is obtained in a corre.spor.dingmanner (Fig, 23). The

difference between IIa and IIb consists in the fact that sever-

al conspicuous points are shifted, a circumstance which is

first manifested by the 5iapram of the potential half-plane on

the velocity-potential Elane. The iiiagram of the log w plane

on the half-plane might even here be accomplished by the Chris-

-... ..,,,, .. , , , 1,m,m, —mm ml 11111 1 1 1 InllllIlllalllllllllllllllll Imllm11111 I
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toffel integral, but the purely formal difficulties are consid-
.———
erably-‘greater than by the following method, The problem can

here be more mnveniantly solved by three auxiliary dia~rams,

which successively show the log w strips on a slotted half-

plane and on an unslotted half-plane,

The strip of the log w plane on a half-plane is repre-

T

.—_

sented by z = 1 + sin2 u
which is cut out along the imagi-

nin2 a’
‘inary axis from -—
tana

to ~ (Fig. 14), A reflection on the

unit circle z = 1 shifts the slot from ~ to O and from,
t

&a to -i tana (Fig, 15), The half-plane slotted from O

to -i tana is finally depicted on the half-plane (Fig, 16) by

the third diagram ~2 = tan’a (f’ - 1). On eliminating the in-

dividual steps, we find, for the diagram of log w plane on

the h~.lfplane, the function

f’
coo’ w cos~ (log k~)= ———.—_ =—

COS2W - 3os2a COS2 (log w) - cos2a

The potential pl?.nes flepicted on the h:.lf-pl?.neby

s~ x= e I or S2 = ~xz are covered by a linear transformation,

so that every three corresponding points coincide. The ex-
f+al

pressions SI = ,.. and Sz=.., ~ = and
1 fcl + b,

f+az
fc2 + b2

lead. (aftez de~~~(.infL]l~ the constants and eliminating

the individual s,uxiliary variables) to the equations

Cos !1OF w) ~2 7
.——

exl=T /=s2 ~lol?‘d==’ “271 - ‘+ -

F

+ 4@cos2a - 5)
Cos (log w) 1— -—

COS2 (log w) - COS2Q sina
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~x2 = p{
Cos (log w) + l-KS

[

‘ (6)
... COS2 (log w) =Ca J-(–—-~21- Ct/

The statemnts in section 1 concerning parameters apply

here unchanged, since only K and a occur, with which the di-

mensions can be determined again. In particular the inte~rals

~ .f@ must be again alculated here, The very difficult

determination of these integrals was made possible by the

choice of the f plane for the integration

since w= eiw.

[

.——.

Flow IIa: 1- fzsinzfl.~ . J ;.fy!.$ }{ l_ 1 Idf,
‘ Jf”.1 J — f’- 1 ‘~+fa f_”l J

slna

It i~ obvious that the integrals are composed of elementary

components and elliptical integrals of the first, second and

third kinds. We will not go farther into the very troublesome

calculations and will only give the result.
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r+

+

n=~

( 1- K2 fa-sins 1-Cosa log\cotarl@~- — - Esim-
2) 2n arc Cos l-fa sins 2 2(li-cosOl

+(F- E) (??(9,kt)

——
COSCL+

—.
~{F E(r)- E F(I’)}- Kcosa+ K--+ sins F

.,
(7

All the equations aFply to the flow IIa and the equation

without underlined terms aTFlies also to IIb. The individual

constants have.the following values:

TT/2
r.>= j /1-cos2a siri2cpdq

o

0 /1-cos’a sin’~

i-vz
T=/ d :?

o l-sin’s Sinzq;

tan r . 1
Eiii-wz6iRm

For

a riethod

tion of

the calculation of the forces actin=

is employed whi & is similar to that

on

.
i

head,

for the calcula-

r aridh. According to Rernouilli Is theorem, we ob-
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tain for the difference in pressure between a point

point above the valve head, Ap =& (1 - w2). The

sure is then ,givenby the integration

whereby the fa~tor l/b K,ustbe added for a reason

tr.entioned. The first surnnandis m + 1, while the

below and a

total pres-

already

second part

leads to the integral

r
.—— —

p* = $JJfcOsC~-t- l- f2sin2
}

1

J
df

( f2-1 ; f2-1 f-tfa

The calculation gi-~es:

p*=:
( )

cosa log cotan ~’ - 1–K2 arc cos fa - sina
2’ir 1- fa sins

+ Cosct log
1-” “osa + log ( #l-T)~iL=a+ sina\F - —

sins 2)
——- — ——

the underlined t,erxs5rorping out for flow IIb,

For flow I the calculation of the forces is considerably

sir~~ler,since it can be v.adeacm rding to the law of momentum.

The forc~s acting on r are corrgosedof:

1. The pressure difference

b&l-K 2),

to infinity on both sides for the width b;

2. The defle ction pressure (K - sins) n~, since m is volume

I
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through per unit of time.

order to obtain again nondimensional coefficients in

accord with the previous researches, we further expand this

with l/b and obtain

P = 1 -2K2 +K (K- Vsins) (omitting ~).

3. Coribining the results.- The values of n, m and p must

now be calculated. in terms of K and a, whereby it must be

borne in mind that the equcctions for m and n can be solved

only in conjunction and that only their solution accurately de-

termines the flGw. If we then take from these equations the

corresponding values of K and a ar.dintroduce them into P,

we thus obtain the value of P. The rather complicated form in

which P, n, m are combined with K and a, necessitat~s

rather troublesome zraphic and mathematical evaluations, whose

results are represented in curves, with PIIa, ‘IIb’ ‘IIa’

‘IIb’ I~IIELand ‘IIb as orfiinates and a as the abscissa,

Herein the curves K = constant for K = O, 0.1 ...0...0 1

were introduced (Figs. 2.’7-23),

From the curves for m, it is immediately obvious that

the whole flow in the CZGSS IIa and IIb is confined to rela-

tively small angle~e In IIb the angles are about twice as

large as in IIa. The sets of curves for h and n show, in

case IIb, that for smal.Langles, the valve lift is almost inde-

menaent of a and K, while this is not so much the case in

IIa. The latter curves hold good in the region down to about

—.
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20°, sin=, from there dowh, a term appears which was neglected

. . in the calculation.

It is easily seen that the flow in the limiting cases is

in order. For large overlappings the angle is very small and

finally becomes a = 90°, at m = co, Atm= 1 (i-e., in the

case where the channel is wide open), it is easily seen from

the equ~tions for m, that K = 1 and a = 90°. In constant

overlappings, K also inctsases with increasing c%, so that

a reaches its ap~arent maximum at K = 1. For positive over-

lappings, the ma~.um angle is amax = 14” in case IIb and

%ax = 8° in IIa. Each overlapping attains a maximum angle

ZLt K = 1,

The course of m with negative overlappings is quite dif-

ferent from what it is with positive overlappings. The indi-

vidual curves alternately cross one another so that, with in-

creasing K, a first increases, reaches a maximum and then

sinks again to K = 1, As to whether such a flow actually ex-

ists, cannot be maintained without further investigation.

Since this so~,e”wh~tresel~blesthe behavior of a throttle valve,

but does not concern valve flows, it was not investigated

further.

In what follows, the quantities in-question were deterrr,ined

for sereral overlapping~, Since the valvee in use show over-

lappings of m = 0-0.6, there were investigated: r,= O; 0.05;

0.1; 0.2; 0.3; 0.6. The corresponding value~ of K, a, etc.,

are obtained in the following manner. In the m diagram, for

L —
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m = constant, a line is drawn parallel to the a axis. This

line intersects-t-he curve -at points, each of whi~ determines

two values K and a These points are now introduced into the

h diagrams and thus the course of the valve lift is plotted

against a. Hence the result is the same here as in the case

treated in Section 1. We obtain, for constant overlapping, a

diagram of a set of three values of a, K and h. From the h

curves, it is obvious that they run very closely in proportion

with a and K.

The angle@ of deflection a of the flow is very small in

both IIa and IIb. The m diagrams exhibit, for the customary

overlappings, values up to a equals about 10°, All the remain-

ing problems “withregard to the different kinds of flow can be

solved with the aid of the computed curves. A knowledge of the

aistance EE r is also important for the flow IIb. This dis-

tance must be determined again by integration. The following -

modification of EEt occurs with the valve lift. EE! = @ for

n = o; EE t decreases, as h increases, re%ches a minimum and

then increases again. It is easy to determine that, from the

minimum on, there is a flow against pressure. The fact is

mathematically important that the variability of EE’ demon-

strates that a flow, in ivhi~ EEI is obtained by construction,

does not necessarily exist.

4. Distinguishing between the two kinds of flow.- After

the three flows have been successfully calculated from all sides,

I !3 —
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there arises the important questions as to which kind of flow

occurs in a given instance, whether there are circumstances un-

der which two different kinds of flow can occur, etc. For small

overlappings, the forces for case I show a slight decrease, but

then a gradual increase with the valve lift. For greater over- .

lappings, the forces increase continuously, though very slowly.

Cases IIa and IIb (Figs. 21-22) exhibit great similarities. The

forces decrease very rapidly, reach a minimum at n = 1 (about)

and then increase rapidly. It is now necessary to consider

the equilibrium of a valve head actuated by a spring. The

power curve of the spring is always an ascending line. Equilib-

rium occurs at the point where the ~ower; curve of the spring

intersects the pressure curve. There are two possible cases.

Either the power of the spring decreases ‘faster than the pres-

sure or vice versa. Only the former case is stable, since the

disturbanm of the equilibrium there generates forces which

tend to restore the original condition (Fig. 24). In this

sense, it is easily recognized that the flows IIa and I1b are

stable under all conditions do”wn to the minimum, beyond which no

definite statement can, however, be made. The fla’~coureesof

tb.eforces in case I (Yig. 23) demonstrates that the flow is to

be considered stable throughout. It is easily understood that ‘

only the flows II can occur at small valve lifts, because of the

otherwise very great velocities.

ever, arise, if the valve head is

freedom of motion, an arrangement

l-— L ____

Other conditions will, how-

held rigidly and given no

on which ‘werebased the exper-
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iments recently performed by Schrenk in Da.rmstadt. He observed

the noteworthy phenomenon that, on lifting the valve head, flow

II occurred first and then changed suddenly to flow I.

It is a question as to what the physical reason is for

the fact.that, with a certain valve lift, instability occurs

when there is no spring, as in Schrenkts arran~.ment. It is

not to be assumed that the course of the forces acting on the

valve head, as stated above, has any effect on this phenome–

non, although the minimum force at a valve lift is of the same

6rclerof magnitude as that of Schrenk in the rough calculation

of the flow.

It is more probable that the friction on the stationary

wall is responsible for this phenomenon. From the point E

on, the velocity along the wall decreases from n=cn to

n=l in infinity. In an actual fluid, the flow along a sta-

tionary wall is such tP.at,w a result of the friction, the

fluid adheres to the wail ariithe velocity then gradually in-

creases up to the value which follows from the Votential flow.

The layer in which this increase oc~urs is very thin and is

called the b~undary or margi-nal layer. If, as in the above

case, the fluid flows alcm~ a wQI. with increasing velocity, .

then the particles in the boundary layer come to rest much

F stoner than the more distant ones. The pressure increase

therefore takes Flace much more quickly in the boundary layer.

A point is finally reached where the pressure in the boundary

layer even generates a counter-current. In most cases, the

L
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flow then detaches itself, a phenomenon which is known from the

diffuser. Similar relations also exist here. It is interesting

that the points of the detachment of the Schrenk flow, plottsd

to scale, lie approximately in a straight line at an anqle of

25°. It is therefore very natural, in connection with the

Schrenk flow, to think of a diffuser in which the flow detaches

itself. It is very difficult to treat this Troblem mathematic-

ally. We can determine approximately the course of the veloc-

ity along the horizontal wall and find a dependence according

to the -1/3 power, on account Of the flow at an angle of 90°.

It is, however, doubtful as to whether the pressure changes

with the velocity and finally becomes -co in the angle. For

this case, the ir,ethodsof the Prandtl theory of a boundary

layer fail completely, because they assume a constant pressure.

Translation by Dwight M. Miner,
N?.tion?.lAdvisory Committee
for Aeronautics.
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